120 research outputs found

    A Program for the Genetics of Grammar

    Get PDF
    Departing from Lenneberg’s biological conception of language and its de- velopment, this paper first reviews select examples from research on lan- guage development and its interface with genetics before making some specific proposals with regard to how the genetics of grammar could be investigated. The central proposal of this paper is that an important, per- haps necessary, avenue for studying the genetics of grammar is to study the genotypes corresponding to phenotypes of child (and genetically im- paired) versions of the computational system of grammar, as opposed to strictly descriptive measures of a construction or standardized linguistic tests. In some cases, these phenotypes have wide explanatory ability, sug- gesting that they directly involve parts of the computational system of lan- guage. The primary example discussed is the phenotype of the Unique Checking Constraint (UCC). In particular, it is proposed that one could usefully start to investigate the genetic basis for he development of finite- ness, object clitic omission, and related phenomena of the UCC. A second, less developed example here, corresponding to a much later developmen- tal stage, is the Universal Phase Requirement (UPR), regulating verbal pas- sives and many other phenomena in children

    A Program for the Genetics of Grammar

    Get PDF
    Departing from Lenneberg’s biological conception of language and its de- velopment, this paper first reviews select examples from research on lan- guage development and its interface with genetics before making some specific proposals with regard to how the genetics of grammar could be investigated. The central proposal of this paper is that an important, per- haps necessary, avenue for studying the genetics of grammar is to study the genotypes corresponding to phenotypes of child (and genetically im- paired) versions of the computational system of grammar, as opposed to strictly descriptive measures of a construction or standardized linguistic tests. In some cases, these phenotypes have wide explanatory ability, sug- gesting that they directly involve parts of the computational system of lan- guage. The primary example discussed is the phenotype of the Unique Checking Constraint (UCC). In particular, it is proposed that one could usefully start to investigate the genetic basis for he development of finite- ness, object clitic omission, and related phenomena of the UCC. A second, less developed example here, corresponding to a much later developmen- tal stage, is the Universal Phase Requirement (UPR), regulating verbal pas- sives and many other phenomena in children

    A Program for the Genetics of Grammar

    Get PDF
    Departing from Lenneberg’s biological conception of language and its de- velopment, this paper first reviews select examples from research on lan- guage development and its interface with genetics before making some specific proposals with regard to how the genetics of grammar could be investigated. The central proposal of this paper is that an important, per- haps necessary, avenue for studying the genetics of grammar is to study the genotypes corresponding to phenotypes of child (and genetically im- paired) versions of the computational system of grammar, as opposed to strictly descriptive measures of a construction or standardized linguistic tests. In some cases, these phenotypes have wide explanatory ability, sug- gesting that they directly involve parts of the computational system of lan- guage. The primary example discussed is the phenotype of the Unique Checking Constraint (UCC). In particular, it is proposed that one could usefully start to investigate the genetic basis for he development of finite- ness, object clitic omission, and related phenomena of the UCC. A second, less developed example here, corresponding to a much later developmen- tal stage, is the Universal Phase Requirement (UPR), regulating verbal pas- sives and many other phenomena in children

    Comparison of Grammar in Neurodevelopmental Disorders: The Case of Binding in Williams Syndrome and Autism With and Without Language Impairment

    Get PDF
    This study investigates whether distinct neurodevelopmental disorders show distinct patterns of impairments in particular grammatical abilities and the relation of those grammatical patterns to general language delays and intellectual disabilities. We studied two disorders (autism and Williams syndrome [WS]) and two distinct properties (Principle A that governs reflexives and Principle B that, together with its associated pragmatic rule, governs pronouns) of the binding module of grammar. These properties are known to have markedly different courses of acquisition in typical development. We compare the knowledge of binding in children with autism with language impairment (ALI) and those with normal language (ALN) to that of children with WS, matched on age to the ALN group, and on age and nonverbal mental age (MA) to the ALI group, as well as to two groups of typically developing (TD) controls, matched on nonverbal MA to ALI and ALN groups. Our results reveal a remarkably different pattern of comprehension of personal pronouns and reflexives in ALI as opposed to ALN, WS, and two groups of TD controls. All five groups demonstrated an equal delay in their comprehension of personal pronouns, in line with widely reported delays in TD literature, argued to be due to delayed pragmatic abilities. However, and most strikingly, the ALI group also showed a pronounced difficulty in comprehension of reflexive pronouns, and particularly of the knowledge that the antecedent of a reflexive must c-command it. The revealed pattern confirms the existence of a particular impairment concerning Principle A in this module of grammar, unrelated to general language delays or cognitive deficits generally present in a large portion of individuals with autism as well as WS, or to general pragmatic deficits, known to be particularly prevalent in the population with autism

    Altered Trafficking of Mutant Connexin32

    Get PDF
    We examined the cellular localization of nine different connexin32 (Cx32) mutants associated with X-linked Charcot–Marie–Tooth disease (CMTX) in communication-incompetent mammalian cells. Cx32 mRNA was made, but little or no protein was detected in one class of mutants. In another class of mutants, Cx32 protein was detectable in the cytoplasm and at the cell surface, where it appeared as plaques and punctate staining. Cx32 immunoreactivity in a third class of mutants was restricted to the cytoplasm, where it often colocalized with the Golgi apparatus. Our studies suggest that CMTX mutations have a predominant effect on the trafficking of Cx32 protein, resulting in a potentially toxic cytoplasmic accumulation of Cx32 in these cells. These results and evidence of cytoplasmic accumulation of other mutated myelin proteins suggest that diseases affecting myelinating cells may share a common pathophysiology

    Shared Neuroanatomical Substrates of Impaired Phonological Working Memory Across Reading Disability and Autism

    Get PDF
    Background Individuals with reading disability and individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading and social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. Methods White-matter structural connectivity via diffusion weighted imaging was examined in 64 children, age 5 to 17 years, with reading disability, ASD, or typical development, who were matched on age, gender, intelligence, and diffusion data quality. Results Children with reading disability and children with ASD exhibited reduced PWM compared with children with typical development. The two diagnostic groups showed altered white matter microstructure in the temporoparietal portion of the left arcuate fasciculus and in the occipitotemporal portion of the right inferior longitudinal fasciculus (ILF), as indexed by reduced fractional anisotropy and increased radial diffusivity. Moreover, the structural integrity of the right ILF was positively correlated with PWM ability in the two diagnostic groups but not in the typically developing group. Conclusions These findings suggest that impaired PWM is transdiagnostically associated with shared neuroanatomical abnormalities in ASD and reading disability. Microstructural characteristics in left arcuate fasciculus and right ILF may play important roles in the development of PWM. The right ILF may support a compensatory mechanism for children with impaired PWM

    Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

    Get PDF
    The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA) formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the University of California at Davis / California Institute of Technology (UCD/CIT) regional air quality model using the statistical oxidation model (SOM) for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approach of Zhang et al. (2014). Two vapor wall-loss scenarios are considered when fitting of SOM to chamber data to determine best-fit SOM parameters, one with “low” and one with “high” vapor wall-loss rates to approximately account for the current range of uncertainty in this process. Simulations were run using these different parameterizations (scenarios) for both the southern California/South Coast Air Basin (SoCAB) and the eastern United States (US). Accounting for vapor wall losses leads to substantial increases in the simulated SOA concentrations from volatile organic compounds (VOCs) in both domains, by factors of  ∼  2–5 for the low and  ∼  5–10 for the high scenarios. The magnitude of the increase scales approximately inversely with the absolute SOA concentration of the no loss scenario. In SoCAB, the predicted SOA fraction of total organic aerosol (OA) increases from  ∼  0.2 (no) to  ∼  0.5 (low) and to  ∼  0.7 (high), with the high vapor wall-loss simulations providing best general agreement with observations. In the eastern US, the SOA fraction is large in all cases but increases further when vapor wall losses are accounted for. The total OA ∕ ΔCO ratio captures the influence of dilution on SOA concentrations. The simulated OA ∕ ΔCO in SoCAB (specifically, at Riverside, CA) is found to increase substantially during the day only for the high vapor wall-loss scenario, which is consistent with observations and indicative of photochemical production of SOA. Simulated O : C atomic ratios for both SOA and for total OA increase when vapor wall losses are accounted for, while simulated H : C atomic ratios decrease. The agreement between simulations and observations of both the absolute values and the diurnal profile of the O : C and H : C atomic ratios for total OA was greatly improved when vapor wall-losses were accounted for. These results overall demonstrate that vapor wall losses in chambers have the potential to exert a large influence on simulated ambient SOA concentrations, and further suggest that accounting for such effects in models can explain a number of different observations and model–measurement discrepancies
    corecore